Abstract
Environmental vineyard conditions can affect the chemical composition or metabolites of grapes and their wines. Grapes grown in three different regions of South Korea were collected and separated into pulp, skin, and seed. The grapes were also vinified after crushing. (1)H NMR spectroscopy with pattern recognition (PR) methods was used to investigate the metabolic differences in pulp, skin, seed, and wines from the different regions. Discriminatory compounds among the grapes were Na, Ca, K, malate, citrate, threonine, alanine, proline, and trigonelline according to PR methods of principal component analysis (PCA) or partial least-squares discriminant analysis (PLS-DA). Grapes grown in regions with high sun exposure and low rainfall showed higher levels of sugar, proline, Na, and Ca together with lower levels of malate, citrate, alanine, threonine, and trigonelline than those grown in regions with relatively low sun exposure and high rainfall. Environmental effects were also observed in the complementary wines. This study demonstrates that (1)H NMR-based metabolomics coupled with multivariate statistical data sets can be useful for determining grape and wine quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.