Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T.cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.