Abstract

The effects of metabolic activators and inhibitors on phosphoenolpyruvate carboxylase (PEPC) activity were examined at pH 7 in partially purified enzyme from nodules of soybean (Glycine max (L.) Merr.), Psophocarpus tetragonolobus DC. and Vigna unguiculata ssp. sesquipedalis (L.) Verdc. Glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, fructose 1-phosphate, fructose 1,6- bisphosphate and phosphoglycerate stimulated the activity about 2-fold at low (0.5 mM) but not saturating (2.5 mM) PEP concentration. Glc 6-P and fru 6-P were the most effective activators and they increased the affinity of the enzyme for PEP by 2-4-fold. The dicarboxylates, malate, succinate, malonate, 2-oxoglutarate and aspartate inhibited PEPC activity. Malate was the most inhibitory, and strongly inhibited PEPC activity even at saturating PEP concentration. The Ki values for malate were 0.3-0.4 mM for soybean and P. tetragonolobus. However, glc 6-P and fru 6-P alleviated maiate inhibition and increased the Ki values by 11- to 28-fold in these two species. We propose that glc 6-P (fru 6-P) activates PEPC in a feedforward regulation and protects it against feedback inhibition by malate and thus coordinates the supply of photosynthate availability with malate synthesis required by the bacteroids to support symbiotic nitrogen fixation in nodules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.