Abstract

In patch-clamped surface cells of human islets, we identified an inwardly rectifying, voltage-independent K+ channel that may be a crucial link between substrate metabolism and depolarization-induced insulin secretion. It is the major channel open at rest. It closes on exposure of the cell to secretagogue concentrations of glucose or other metabolic fuels and oral hypoglycemic sulfonylureas but reopens on addition of either a metabolic inhibitor that prevents substrate utilization or the hyperglycemic sulfonamide diazoxide. Onset of electrical activity coincides with channel closure by the secretagogues. In excised patches, the activity of this channel is inhibited at its cytoplasmic surface by ATP. These results suggest that in humans, as in rodents, 1) rises in cytoplasmic ATP levels during substrate metabolism trigger K+-channel closure and cell depolarization and 2) clinically useful sulfonamides modulate glucose-induced insulin secretion, in part by affecting a readily identifiable resting conductance pathway for K+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.