Abstract

Anfinsen showed that a protein's fold is specified by its sequence. Although it is clear why mutant proteins form amyloid, it is harder to rationalize why a wild-type protein adopts a native conformation in most individuals, but it misfolds in a minority of others, in what should be a common extracellular environment. This discrepancy suggests that another event likely triggers misfolding in sporadic amyloid disease. One possibility is that an abnormal metabolite, generated only in some individuals, covalently modifies the protein or peptide and causes it to misfold, but evidence for this is sparse. Candidate metabolites are suggested by the recently appreciated links between Alzheimer's disease (AD) and atherosclerosis, known chronic inflammatory metabolites, and the newly discovered generation of ozone during inflammation. Here we report detection of cholesterol ozonolysis products in human brains. These products and a related, lipid-derived aldehyde covalently modify Abeta, dramatically accelerating its amyloidogenesis in vitro, providing a possible chemical link between hypercholesterolemia, inflammation, atherosclerosis, and sporadic AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.