Abstract

Pharmaceuticals from human or veterinary medication form a new class of micropollutants that poses a serious threat to our aquatic environment and its organisms. The intensively used nonsteroidal anti-inflammatory drug diclofenac is found in the environment worldwide due to its poor elimination during waste water treatment processes. In order to test phytoremediation as a tool for the removal of this drug from waste water, the uptake of the compound into plant tissues and its metabolic pathway was addressed using Hordeum vulgare (barley) and a hairy root cell culture of Armoracia rusticana (horse radish) as model species. Diclofenac is taken up by plants and undergoes rapid metabolization; already after 3h of exposure the drug and its metabolites could be detected in the plant tissues. Similar to its fate in mammalian cells the drug is activated in a phase I reaction resulting in the hydroxylated metabolite 4′OH-diclofenac which is conjugated subsequently in phase II to a glucopyranoside, a typical plant specific metabolite. After exposure to 10 and 100μM diclofenac a concentration dependent formation of the hydroxylated metabolite was observed, while the formation of the phase II metabolite OH-diclofenac glucopyranoside was not positively affected by the higher concentration. To our knowledge this is the first time these two human painkiller metabolites are shown to occur in plant tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.