Abstract

The kinetic parameters of monoamine oxidase (MAO; E.C 1.4.3.4) and catechol-O-methyltransferase (COMT; EC 2.1.1.6) were evaluated in extracts of adrenergic and non-adrenergic mouse neuroblastoma cells and in rat glioma cells. Using the naturally-occurring substrates tyramine, tryptamine, serotonin and norepinephrine, the affinity of MAO for a given substrate was independent of the presence of the catecholaminergic pathway or cell type used, with apparent Km values ranging from 8-14 microM for tryptamine to 510-580 microM for norepinephrine. The MAO activity in glioma cells was substantially greater than in either neuroblastoma clone, but Vmax values varied little with substrate among cell lines. Both the neuronal and glial COMT had a similar Km for 1-norepinephrine (200 microM); the corresponding Vmax values were also similar among the different cell lines, but represented only 2-10% of the maximal MAO activity. Neuroblastoma and glioma cells, when grown from early logarithmic to stationary phase, showed no significant changes in specific activity of either MAO or COMT. Growth of cells for 3 days with 1 mM-N6,O2'-dibutyryl adenosine-3',5'-cyclic monophosphate resulted in no marked change in either MAO or COMT activity. These results suggest that in neurons neither MAO nor COMT plays a major role in the type of transmitter inactivation that is analogous to that of acetylcholinesterase in cholinergic synapses. The occurrence of considerable MAO and acetylcholinesterase activities in glioma cells may indicate a role for these cells in neurotransmitter inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.