Abstract
Unique metabolic requirements accompany the development and functional fates of immune cells. How cellular metabolism is important in natural killer (NK) cells and their memory-like differentiation in bacterial infections remains elusive. Here, we utilise our established NK cell memory assay to investigate the metabolic requirement for memory-like NK cell formation and function in response to the Gram-negative intracellular bacteria Burkholderia pseudomallei (BP), the causative agent of melioidosis. We demonstrate that CD160+ memory-like NK cells upon BP stimulation upregulate glucose and amino acid transporters in a cohort of recovered melioidosis patients which is maintained at least 3-month post-hospital admission. Using an in vitro assay, human BP-specific CD160+ memory-like NK cells show metabolic priming including increased expression of glucose and amino acid transporters with elevated glucose uptake, increased mTOR activation and mitochondrial membrane potential upon BP re-stimulation. Antigen-specific and cytokine-induced IFN-γ production of this memory-like NK cell subset are highly dependent on oxidative phosphorylation (OXPHOS) with some dependency on glycolysis, whereas the formation of CD160+ memory-like NK cells in vitro is dependent on fatty acid oxidation and OXPHOS and further increased by metformin. This study reveals the link between metabolism and cellular function of memory-like NK cells, which can be exploited for vaccine design and for monitoring protection against Gram-negative bacterial infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.