Abstract

The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.