Abstract

Kluyveromyces marxianus has a high potential for industrial production of aroma compounds, such as 2-phenylethanol, which is derived in a bioconversion from L-phenylalanine. In the present work the product yield of K. marxianus in batch cultivation was estimated as 0.65 mol 2-phenylethanol/mol L-phenylalanine and thus significantly below the theoretical optimum of 1 mol/mol. By a comprehensive approach of stoichiometric balancing and GC-MS analysis of various substrates and products of K. marxianus a detailed insight into its metabolism was gained. For this purpose ring-labelled ((13)C(6)) L-phenylalanine and naturally labelled glucose were applied as substrates in tracer studies in batch culture. The produced aroma compounds 2-phenylethanol and 2-phenylethylacetate stem exclusively from the supplied L-phenylalanine, whereas glucose was not converted into these products because of efficient feed-back inhibition of prephenate dehydratase in the L-phenylalanine biosynthetic pathway. It could be further shown that the supplied L-phenylalanine completely covers the anabolic cellular demand for this amino acid. Quantification of (13)CO(2) in the exhaust gas provided clear evidence for catabolic breakdown of L-phenylalanine during cultivation. Metabolic balancing around the pool of free intracellular L-phenylalanine revealed a significant loss of L-phenylalanine into catabolic and anabolic pathways. While 73.3% of L-phenylalanine was converted into 2-phenylethanol or 2-phenylethylacetate, 22.4% was catabolized through the cinnamate pathway and 4.3% was directed towards protein biosynthesis. Catabolic breakdown of L-phenylalanine via hydroxylation to L-tyrosine could be excluded. In addition to an insight into metabolic functioning and regulation of 2-phenylethanol-producing K. marxianus, the approach presented here provides important information on potential targets for genetic optimization of 2-phenylethanol-producing yeasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.