Abstract

We have shown that a compartmentation of glycolysis and gluconeogenesis exists in vascular smooth muscle (VSM) and that an intact plasma membrane is essential for compartmentation. Previously, we observed that disruption of the caveolae inhibited glycolysis but stimulated gluconeogenesis, suggesting a link between caveolae and glycolysis. We hypothesized that glycolytic enzymes specifically localize to caveolae. We used confocal microscopy to determine the localization of caveolin-1 (CAV-1) and phosphofructokinase (PFK) in freshly isolated VSM cells and cultured A7r5 cells. Freshly isolated cells exhibited a peripheral (membrane) localization of CAV-1 with 85.3% overlap with PFK. However, only 59.9% of PFK was localized with CAV-1, indicating a wider distribution of PFK than CAV-1. A7r5 cells exhibited compartmentation of glycolysis and gluconeogenesis and displayed two apparent phenotypes distinguishable by shape (spindle and ovoid shaped). In both phenotypes, CAV-1 fluorescence overlapped with PFK fluorescence (83.1 and 81.5%, respectively). However, the overlap of PFK with CAV-1 was lower in the ovoid-shaped (35.9%) than the spindle-shaped cells (53.7%). There was also a progressive shift in pattern of colocalization from primarily the membrane in spindle-shaped cells (both freshly isolated and cultured cells) to primarily the cytoplasm in ovoid-shaped cells. Overall, cellular colocalization of PFK with CAV-1 was significant in all cell types (0.68 > or = R2 < or = 0.77). Coimmunoprecipitation of PFK with CAV-1 further validated the possible interaction between the proteins. We conclude that a similar distribution of one pool of PFK with CAV-1 contributes to the compartmentation of glycolysis from gluconeogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.