Abstract

Development consists of a highly ordered suite of steps and transitions, like choreography. Although these sequences are often evolutionarily conserved, they can display species variations in duration and speed, thereby modifying final organ size or function. Despite their evolutionary significance, the mechanisms underlying species-specific scaling of developmental tempo have remained unclear. Here, we will review recent findings that implicate global cellular mechanisms, particularly intermediary and protein metabolism, as species-specific modifiers of developmental tempo. In various systems, from somitic cell oscillations to neuronal development, metabolic pathways display species differences. These have been linked to mitochondrial metabolism, which can influence the species-specific speed of developmental transitions. Thus, intermediary metabolic pathways regulate developmental tempo together with other global processes, including proteostasis and chromatin remodeling. By linking metabolism and the evolution of developmental trajectories, these findings provide opportunities to decipher how species-specific cellular timing can influence organism fitness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.