Abstract

Tuta absoluta (Meyrick) resistance to insecticides has become a significant problem in many tomato production areas in South America. New insecticides are now available for the management of this pest (i.e. spinosad), however there is scarce information about their efficacy on field populations. With the aim of determining the susceptibility of T. absoluta to spinosad we evaluated the response of second instar larvae, from five field populations (Azapa 1, Azapa 2, Lluta, Colín and Valdivia) and a laboratory reference strain (S), to a diagnostic concentration of the insecticide. We also determined the activity of the detoxifying enzymes mixed-function oxidases (MFO), glutathione- S-transferases (GST) and esterases (EST) in the same larval stage. Larval mortality in field populations was significantly lower in Azapa 1 (50.0%), Azapa 2 (44.9%), Lluta (39.9%) and Colín (53.5%) when compared to the laboratory strain (91.7%). MFO activities in field populations were between 1.8 and 4.6 times higher than those observed in the S strain, while for EST, the ratio varied from 1.7 to 14.7. The lowest ratios were observed for the GST (0.5–2.7), however, significant differences were detected for the three enzyme systems. We conclude that the evaluated mechanisms would be involved in spinosad resistance of populations of T. absoluta, presenting an increased MFO activity in all populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.