Abstract

The metabolic pathways associated with the tricarboxylic acid cycle intermediates of Pichia pastoris were studied using biosynthetically directed fractional 13C labelling. Cells were grown aerobically in a chemostat culture fed at two dilution rates (1.39x10(-5) s-1 and 4.44x10(-5) s-1) with varying mixtures of glycerol and methanol as sole carbon sources. The results show that, with co-assimilation of methanol, the common amino acids are synthesized as in P. pastoris cells grown on glycerol only. During growth at the lower dilution rate, when both substrates are entirely consumed, the incorporation of methanol into the biomass increases as the methanol fraction in the feed is increased. Moreover, the co-assimilation of methanol impacts on how key intermediates of the pentose phosphate pathway (PPP) are synthesized. In contrast, such an impact on the PPP is not observed at the higher dilution rate, where methanol is only partially consumed. This finding possibly indicates that the distribution of methanol carbon into assimilatory and dissimilatory (direct oxidation to CO2) pathways are different at the two dilution rates. Remarkably, distinct flux ratios were registered at each of the two growth rates, while the dependency of the flux ratios on the varying fraction of methanol in the medium was much less pronounced. This study brings new insights into the complex regulation of P. pastoris methanol metabolism in the presence of a second carbon source, revealing important implications for biotechnological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.