Abstract

Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.