Abstract
2,5-Dimethylpyrazine (2,5-DMP) is a high-value-added alkylpyrazine compound with important applications in both the food and pharmaceutical fields. In response to the increasing consumer preference for natural products over chemically synthesized ones, efforts have been made to develop efficient microbial cell factories for the production of 2,5-DMP. However, the previously reported recombinant strains have exhibited low yields and relied on expensive antibiotics and inducers. In this study, we employed metabolic engineering strategies to develop an Escherichia coli strain capable of producing 2,5-DMP at high levels without the need for inducers or antibiotics. Initially, the biosynthesis pathway of 2,5-DMP was constructed that realized 2,5-DMP production from glucose. Subsequently, efforts focused on enhancing 2,5-DMP production by improving the availability of the cofactor NAD+ and precursor l-threonine. Additionally, the supply and conversion of l-threonine were balanced by optimizing the copy number of the key gene tdh on the chromosome and by modifying the l-threonine transport system. The final engineering strain D19 produced 3.1 g/L of 2,5-DMP, which is the highest titer for fermentative production of 2,5-DMP using glucose as the carbon source up to date. The strategies used in this study lay a good foundation for the production of 2,5-DMP on a large scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.