Abstract

BackgroundS-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium.ResultsFour genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium.ConclusionsThis study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.

Highlights

  • S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions

  • S-Adenosylmethionine (SAM) is one of the most widely used cofactors for group transfer reactions involved in various metabolic processes, and it serves as the main methyl donor for methylation of DNA, proteins and secondary metabolites, as well as 5-deoxyadenosyl radical, 1-aminopropyl, and 2-aminobutyryl donors [1, 2]

  • SAM-dependent group transfer reactions can be broadly applied in the fields of chemical biology, synthetic biology and metabolic engineering [3,4,5]

Read more

Summary

Introduction

S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. The SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. S-Adenosylmethionine (SAM) is one of the most widely used cofactors for group transfer reactions involved in various metabolic processes, and it serves as the main methyl donor for methylation of DNA, proteins and secondary metabolites, as well as 5-deoxyadenosyl radical, 1-aminopropyl, and 2-aminobutyryl donors [1, 2]. SAM-dependent group transfer reactions can be broadly applied in the fields of chemical biology, synthetic biology and metabolic engineering [3,4,5]. Given the critical functions and market demand, SAM is attracting much interest

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.