Abstract

Xylose, the second most abundant sugar in lignocellulosic biomass hydrolysates, can be fermented by Saccharomyces cerevisiae expressing one of two heterologous xylose pathways: a xylose oxidoreductase pathway and a xylose isomerase pathway. Depending on the type of the pathway, its optimization strategies and the fermentation efficiencies vary significantly. In the present study, we constructed two isogenic strains expressing either the oxidoreductase pathway (XYL123) or the isomerase pathway (XI-XYL3), and delved into simple and reproducible ways to improve the resulting strains. First, the strains were subjected to the deletion of PHO13, overexpression of TAL1, and adaptive evolution, but those individual approaches were only effective in the XYL123 strain but not in the XI-XYL3 strain. Among other optimization strategies of the XI-XYL3 strain, we found that increasing the copy number of the xylose isomerase gene (xylA) is the most promising but yet preliminary strategy for the improvement. These results suggest that the oxidoreductase pathway might provide a simpler metabolic engineering strategy than the isomerase pathway for the development of efficient xylose-fermenting strains under the conditions tested in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.