Abstract

The n-3 fatty acids contribute to regulation of hepatic fatty acid oxidation and synthesis in adults and accumulate in fetal and infant liver in variable amounts depending on the maternal diet fat composition. Using 2D gel proteomics and matrix-assisted laser desorption/ionization time of flight mass spectrometry, we recently identified altered abundance of proteins associated with glucose and amino acid metabolism in neonatal rat liver with increased n-3 fatty acids. Here, we extend studies on n-3 fatty acids in hepatic metabolic development to targeted gene and metabolite analyses and map the results into metabolic pathways to consider the role of n-3 fatty acids in glucose, fatty acid, and amino metabolism. Feeding rats 1.5% compared with <0.1% energy 18:3n-3 during gestation led to higher 20:5n-3 and 22:6n-3 in 3-day-old offspring liver, higher serine hydroxymethyltransferase, carnitine palmitoyl transferase, and acyl CoA oxidase and lower pyruvate kinase and stearoyl CoA desaturase gene expression, with higher cholesterol, NADPH and glutathione, and lower glycine (P < 0.05). Integration of the results suggests that the n-3 fatty acids may be important in facilitating hepatic metabolic adaptation from in utero nutrition to the postnatal high-fat milk diet, by increasing fatty acid oxidation and directing glucose and amino acids to anabolic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.