Abstract

The physiology of fishes in the early stages of development remains poorly assessed despite the importance of identifying energy bottlenecks in organisms faced with changing environmental conditions. This study describes the metabolic activity of dusky kob Argyrosomus japonicus throughout its early development, from hatchling to settlement stage. Standard, routine and active metabolic rates (SMR, RMR and AMR, respectively) were assessed to determine the species’ metabolic scope and identify how metabolism changes with growth and development. Distinct metabolic changes occurred in association with developmental changes during the early life stages, with flexion-stage larvae showing significantly reduced metabolic scope (approx. 0.30 µmol O2 ind.–1 h–1), representing an energy bottleneck. Based on these findings, it is likely that larvae of A. japonicus are most susceptible to environmental perturbations during flexion. The variability of metabolic rates during the diel cycle was also assessed and revealed that the early-stage larvae showed no preference for daylight, although settlement-stage juveniles were more active during daylight hours (RMR = 12.78 µmol O2 ind.–1 h–1) than at night (RMR = 5.87 µmol O2 ind.–1 h–1). These results suggest that metabolic measurements of the SMR of A. japonicus larvae can be taken at any time of the diel cycle until the settlement phase, when readings should take place at night.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.