Abstract
Although recent studies on blind single image super-resolution (SISR) have achieved significant success, most of them typically require supervised training on synthetic low resolution (LR)-high resolution (HR) paired images. This leads to re-training necessity for different degradations and restricted applications in real-world scenarios with unfavorable inputs. In this paper, we propose an unsupervised blind SISR method with input underlying different degradations, named different degradations blind super-resolution (DDSR). It formulates a Gaussian modeling on blur degradation and employs a meta-learning framework for solving different image degradations. Specifically, a neural network-based kernel generator is optimized by learning from random kernel samples, referred to as random kernel learning. This operation provides effective initialization for blur degradation optimization. At the same time, a meta-learning framework is proposed to resolve multiple degradation modelings on the basis of alternative optimization between blur degradation and image restoration, respectively. Differing from the pre-trained deep-learning methods, the proposed DDSR is implemented in a plug-and-play manner, and is capable of restoring HR image from unfavorable LR input with degradations such as partial coverage, noise addition, and darkening. Extensive simulations illustrate the superior performance of the proposed DDSR approach compared to the state-of-the-arts on public datasets with comparable memory load and time consumption, yet exhibiting better application flexibility and convenience, and significantly better generalization ability towards multiple degradations. Our code is available at https://github.com/XYLGroup/DDSR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.