Abstract

Chemically powered self-propelled colloids generate a motor force by converting locally a source of energy into directed motion, a process that has been explored both in experiments and in computational models. The use of active colloids as building blocks for nanotechnology opens the doors to interesting applications, provided we understand the behavior of these elementary constituents. We build a consistent mesoscopic simulation model for self-propelled colloids of complex shape with the aim of resolving the coupling between their translational and rotational motion. Considering a passive L-shaped colloidal particle, we study its Brownian dynamics and locate its center of hydrodynamics, the tracking point at which translation and rotation decouple. The active L particle displays the same circling trajectories that have been found experimentally, a result which we compare with the Brownian dynamics model. We put forward the role of hydrodynamics by comparing our results with a fluid model in which the particles' velocities are reset randomly. There, the trajectories only display random orientations. We obtain these original simulation results without any parametrization of the algorithm, which makes it a useful method for the preliminary study of active colloids, prior to experimental work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.