Abstract

A dynamic optimization strategy is presented to generate customized equations of state (EOS) for the numerical simulation of non-ideal fluids at high density ratio. While stable branches of the analytical EOS are preserved, the spinodal region is self-tuned during the simulation, in order to compensate for numerical errors caused by discretization in phase space. The employed EOS permits the readily setting of the sound speeds for the gas and liquid phases, thus allowing stable simulation with high density (1 : 10 to 1 : 1000) and compressibility ratios (250 : 1–25000 : 1). The present technique is demonstrated for lattice Boltzmann simulation of (free-space) multiphase systems with flat and circular interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.