Abstract

We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg–Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current–voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current–phase relation of this kind of lateral weak link in the Josephson regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.