Abstract

The impact of mesoscale organization on dynamics and ion transport in binary ionic liquid mixtures is investigated by broad-band dielectric spectroscopy, dynamic-mechanical spectroscopy, X-ray scattering, and molecular dynamics simulations. The mixtures are found to form distinct liquids with macroscopic properties that significantly deviate from weighted contributions of the neat components. For instance, it is shown that the mesoscale morphologies in ionic liquids can be tuned by mixing to enhance the static dielectric permittivity of the resulting liquid by as high as 100% relative to the neat ionic liquid components. This enhancement is attributed to the intricate role of interfacial dynamics associated with the changes in the mesoscopic aggregate morphologies in these systems. These results demonstrate the potential to design the physicochemical properties of ionic liquids through control of solvophobic aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.