Abstract

This paper deals with mesoscale analysis of masonry structures, which involves fracture propagation in brick units as well as along the masonry joints. The brick–mortar interfaces are incorporated in standard finite elements by employing a constitutive law with embedded discontinuity. Macrocracks in bricks are modelled in a discrete way using the same methodology, without any a-priori assumptions regarding their orientation. The proposed approach is computationally efficient as it does not explicitly require the discretization of joints. The accuracy of the approximation is first assessed by comparing the solution with a detailed mesoscale model incorporating interface elements. Later, a numerical study is conducted involving simulation of various experimental tests on small masonry assemblages, as well as single-leaf masonry walls, with running bond pattern, subjected to in-plane loading. The results clearly demonstrate the predictive abilities of the proposed simplified approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.