Abstract

Drug delivery systems have been a milestone in medical research in the last twenty years, still representing a key aspect of innovation and evolution in pharmacokinetics and pharmacodynamics. Among several proposed solutions, inorganic mesoporous materials could be a promising vehicle. Their specific chemical-physical properties make them ideal candidates for the adsorption and loading of active pharmaceutical ingredients (API). Recently, mesoporous zirconia nanoparticles (MZNs) have been described as a novel drug delivery system due to their high surface area and biocompatibility. In this work, we investigated the loading and release efficiencies of a wide range of API on MZNs characterized by suitable pore volume and versatility, focusing on the integrity of the released drugs investigated through solution NMR and ESI-MS techniques. In order to explore the potentialities of MZNs for biomedical applications, we selected ibuprofen, N-acetyl-l-cysteine, vancomycin, gentamicin, nitrofurantoin, and indomethacin as benchmark API characterized by a wide range of polarity, molecular weight and presence of different functional groups. MZNs showed to efficiently load and release most of the API investigated. Long time loadings were also investigated observing that, after more than three months, no side reaction occurred on the released drugs except for intrinsically more labile API like NTF and NAC. MZNs ensured high inertness towards a wide range of functional groups such as aliphatic and aromatic amides, acetals of sugar residues as well as several chiral moieties bearing tertiary stereocenters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.