Abstract

Vanadium oxide incorporated mesoporous silica (V-m-SiO2) were designed and synthesized using a surfactant-modified sol-gel method. Detailed characterization shows that monomeric [VO4] sites containing one terminal V[double bond, length as m-dash]O bond and three V-O-support bonds are dominated until atomic ratio of vanadium to silicon approaches to 5%. It is also confirmed that such V-m-SiO2 catalyst contains high proportion of vanadium oxide species interacting strongly with silica. Compared to vanadium oxide supported mesoporous silica (V/m-SiO2) prepared using a traditional impregnation method, present V-m-SiO2 catalyst exhibits more superior ability to catalyze oxidative dehydrogenation of propane to propylene. By correlation with structural data, superior catalytic performance of present V-m-SiO2 catalyst can be reasonably attributed, in part, to its favorable geometric and electronic properties rendered by the unique preparation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.