Abstract

Noble metal nanoparticles decorated on a catalyst support with a large specific surface area can exhibit enhanced catalytic activity. To this end, a synthetic method to heterogeneously and evenly nucleate platinum nanoparticles (Pt NPs) onto mesoporous silica nanoparticles (MSNs) is developed. The obtained Pt NP-modified MSNs (Pt-MSNs) are characterized as a thin layer of 3 nm-sized Pt NPs densely assembled on the MSN surface, by which the throughput of the peroxidase-like activity of Pt-MSNs is greatly improved. The utility of Pt-MSNs in colorimetric detection of analytes is validated for two different assay schemes. Firstly, colloidally dispersed Pt-MSNs are employed as a peroxidase-mimic in a two-step cascade reaction to quantitate glucose/cholesterol based on the amount of H2O2 produced by glucose/cholesterol oxidase. Secondly, detection of C-reactive protein (CRP) is conducted on a solid substrate by adopting a sandwich immunoassay format. Detection limits are estimated to be 20 μM, 55 μM, and 3.9 pM for glucose, cholesterol, and CRP, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.