Abstract

Electroblowing and sol–gel reaction were combined to prepare mesoporous silica fibers. Poly(methyl methacrylate) (PMMA), a simple commercial polymer with weak hydrogen bonding to silica, was demonstrated to be valuable in improving the electrospinnability and as a porogenic agent. Compared with that in electrospinning, the jet stream in electroblowing was more stable and the resultant fibers were more uniform. The electroblown fibers were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption and desorption isotherms. The phase separation behavior and mechanism for the formation of the amorphous mesoporous structure were discussed. Although there was no covalent bonding between PMMA and silica, macrophase separation was completely prevented in the electroblown fibers and the pore size in the calcined silica fibers ranged from 10 to 20 nm. However, the previously reported electrospun silica fibers, in which surfactants or polymers with strong hydrogen or covalent bonding to silanol groups were used as structure directing agents, had average pore sizes below 10 nm. The present study offers a facile method for the preparation of highly mesoporous silica fibers with large mesopores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.