Abstract

Coupling low-temperature plasma technology with catalysts can significantly enhance air purification efficiency and mitigate the generation of secondary pollutants. In this study, mesoporous [Formula: see text]-Al2O3 supported Mn–Ce–Co ternary oxides were introduced into a widely employed tubular dielectric barrier discharges (DBD) reactor for indoor air purification. The plasma-catalytic degradation of HCHO exhibited the following degradation efficiency order: Mn–Ce–Co/[Formula: see text]-Al2O3 [Formula: see text] Mn/[Formula: see text]-Al2O3 [Formula: see text] Mn–Ce/[Formula: see text]-Al2O3 [Formula: see text] Co/[Formula: see text]-Al2O3 [Formula: see text] [Formula: see text]-Al2O3 [Formula: see text] Ce/[Formula: see text]-Al2O3 [Formula: see text] Plasma. When compared to plasma treatment alone, the catalyst resulted in a remarkable 1.8-fold enhancement under conditions of 3.0[Formula: see text]kV, [Formula: see text]C, 60% RH. Additionally, the concentrations of the by-products O3 and NO[Formula: see text] were significantly reduced by 88.2% and 93.3%, respectively. The synergistic interaction between Mn, Ce and Co oxides facilitated the formation and transportation of surface-reactive oxygen species, thereby contributing to the thorough oxidation of HCHO and organic intermediates during the plasma-catalytic process. Moreover, the high specific surface area offered by mesoporous materials enhanced the adsorption and catalytic activity towards HCHO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.