Abstract
Surface directed instability and dewetting in thin films and resulting morphologies are studied using 3D nonlinear simulations based on the equations of motion, both for the isotropic and anisotropic 2D substrate patterns. Three different substrate (wettability) patterns are considered: (a) arrays of more (or completely) wettable rectangular blocks on a less wettable substrate, (b) arrays of less wettable blocks on a more (or completely) wettable substrate, and (c) a checkerboard pattern of alternating more and less wettable blocks. An ideal replication of the surface energy pattern produces an ordered 2D array of liquid columns (in case 1), or a matrix of holes on a flat liquid sheet (in case 2), or a checkerboard pattern of alternating liquid columns and holes/depressions (in case 3). The effects of pattern periodicity, domain widths, anisotropy, and wettability on the morphological phase transitions are presented. Regardless of the precise geometry of the substrate pattern, templating is found to be b...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.