Abstract

Alpha5beta1 integrin is a cell surface receptor that mediates cell-extracellular matrix adhesions by interacting with fibronectin. Alpha5 subunit-deficient mice die early in gestation and display mesodermal defects; most notably, embryos have a truncated posterior and fail to produce posterior somites. In this study, we report on the in vivo effects of the alpha5-null mutation on cell proliferation and survival, and on mesodermal development. We found no significant differences in the numbers of apoptotic cells or in cell proliferation in the mesoderm of alpha5-null embryos compared to wild-type controls. These results suggest that changes in overall cell death or cell proliferation rates are unlikely to be responsible for the mesodermal deficits seen in the alpha5-null embryos. No increases in cell death were seen in alpha5-null embryonic yolk sac, amnion and allantois compared with wild-type, indicating that the mutant phenotype is not due to changes in apoptosis rates in these extraembryonic tissues. Increased numbers of dying cells were, however, seen in migrating cranial neural crest cells of the hyoid arch and in endodermal cells surrounding the omphalomesenteric artery in alpha5-null embryos, indicating that these subpopulations of cells are dependent on alpha5 integrin function for their survival. Mesodermal markers mox-1, Notch-1, Brachyury (T) and Sonic hedgehog (Shh) were expressed in the mutant embryos in a regionally appropriate fashion. Both T and Shh, however, showed discontinuous expression in the notochords of alpha5-null embryos due to (1) degeneration of the notochordal tissue structure, and (2) non-maintenance of gene expression. Consistent with the disorganization of notochordal signals in the alpha5-null embryos, reduced Pax-1 expression and misexpression of Pax-3 were observed. Anteriorly expressed HoxB genes were expressed normally in the alpha5-null embryos. However, expression of the posteriormost HoxB gene, Hoxb-9, was reduced in alpha5-null embryos. These results suggest that alpha5beta1-fibronectin interactions are not essential for the initial commitment of mesodermal cells, but are crucial for maintenance of mesodermal derivatives during postgastrulation stages and also for the survival of some neural crest cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.