Abstract

Shell-rib structures made of textile-reinforced composites are used in a wide range of applications to increase bending, buckling and torsional stiffness. Such composites are usually manufactured in differential construction at the preform level by assembling several textile structures or at the component level by the subsequent joining of separately manufactured shells and stiffening structures. Integral preform production is one way to overcome the disadvantages of the forenamed methods, such as high manual effort, failure during assembling or fiber distortion. Weft-knitting technology is excellent for achieving integral preforms for shell-rib components with a strong connection between the shell and the rib, especially while producing biaxial weft-knitted fabrics (BWKF) with reinforcing yarns in the warp and weft direction to improve its mechanical behavior. In this work, the possibilities of the knitting technique are investigated, and a finite element model for comparing different variants is developed and validated. A meso-scale Finite-Element-Method (FEM) model of the BWKF is used. The simulation results with the meso-scale model show a good correlation with experimental data by a description of bending strength and stiffness of different FRP configuration variations. The model can be used in further investigation of fiber-reinforced polymer (FRP) made from BWKF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.