Abstract
This paper presents a mesh-free numerical modeling approach for carbon nanotubes (CNTs) subjected to bending loads. The higher-order Cauchy-Born rule was employed to construct the higher-order continuum constitutive model. An initial equilibrium single-walled CNT (SWCNT) was viewed as been formed by rolling up a graphite sheet into a cylindrical shape. The deformation from an original SWCNT to the current configuration was approximated with the moving least-square (MLS) approximation, and the mesh-free computational framework was established in the theoretical scheme of higher-order gradient continuum. Mesh-free numerical simulations were carried out for SWCNTs, and the accuracy and convergence were discussed in comparison with the results of atomistic simulation. The buckling behavior was studied for various types of SWCNTs upon bending, and the buckling mechanism was investigated in virtue of the continuum variables, which showed that the maximum axial compressive strain played a vital role in the development of kinking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.