Abstract

A new method for smoothly connecting different patches on triangle meshes with arbitrary connectivity, called mesh blending, is presented. A major feature of mesh blending is to move vertices of the blending region to a virtual blending surface by choosing an appropriate parameterization of those vertices. Once blending is completed, the parameterization optimization is performed to perfect the final meshes. Combining mesh blending with multiresolution techniques, an effective blending technique for meshes is obtained. Our method has several advantages: (1) the user can intuitively control the blending result using different blending radii, (2) the shape of cross-section curves can be adjusted to flexibly design complex models, and (3) the resulting mesh has the same connectivity as the original mesh. In this paper, some examples about smoothing, sharpening, and mesh editing show the efficiency of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.