Abstract

Fusion power plant studies have found helium to be an attractive coolant based on its safety advantages and compatibility with structural materials at high temperature. However, gas coolants in general tend to provide modest heat transfer performance due to their inherently low heat capacity and heat transfer coefficient. Innovative techniques have been proposed previously using porous metal heat transfer media infiltrated by the coolant. The general design strategy is to minimize the coolant flow path length in contact with the porous medium, and to minimize the friction factor in that zone while simultaneously maximizing the heat transfer coefficient. In this work, we seek to develop a comprehensive thermo-fluid model including all key heat transfer processes to help in assessing and optimizing a helium-cooled porous media configuration for plasma facing component application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.