Abstract

Spectral libraries are useful resources in proteomic data analysis. Recent advances in deep learning allow tandem mass spectra of peptides to be predicted from their amino acid sequences. This enables predicted spectral libraries to be compiled, and searching against such libraries has been shown to improve the sensitivity in peptide identification over conventional sequence database searching. However, current prediction models lack support for longer peptides, and thus far, predicted library searching has only been demonstrated for backbone ion-only spectrum prediction methods. Here, we propose a deep learning-based full-spectrum prediction method to generate predicted spectral libraries for peptide identification. We demonstrated the superiority of using full-spectrum libraries over backbone ion-only prediction approaches in spectral library searching. Furthermore, merging spectra from different prediction models, as a form of ensemble learning, can produce improved spectral libraries, in terms of identification sensitivity. We also show that a hybrid library combining predicted and experimental spectra can lead to 20% more confident identifications over experimental library searching or sequence database searching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.