Abstract

The development of a preconcentration method for the measurement of trace levels of mercury in digested sediments is described. Solid phase extraction (SPE) was used for the preconcentration of mercury coupled on-line by means of a flow injection (FI) system followed by cold vapour atomic absorption spectrometry (CVAAS) detection. The SPE was carried out through a column packed with a sorbent material containing triisobutylphosphine sulfide (CYANEX 471X®) as mercury extractant and prepared by the sol-gel process. The effects of FI variables (argon, eluent, and reductant flow rates, loading and elution times) as well as the eluent concentration on the analytical performance of the method were evaluated. The proposed method was validated under the optimum conditions. The calibration graph was linear from 0.05 µg L−1 to 3.0 µg L−1 of Hg. The detection limit (DL), based on three times the standard deviation of the blank measurement criterion, was 24 ng L−1. The repeatability was 1.5% and 1.8% RSD (n = 10) at concentrations of 0.5 and 1 µg L−1 of Hg, respectively. Method enrichment factors of 16 with a productivity of 30 samples h−1 or 32 with a productivity of 17 samples h−1 were achieved under selected conditions. Certified reference materials, inductively coupled plasma mass spectroscopy (ICP-MS) and cold vapour atomic fluorescence spectrometry (CVAFS), were used to evaluate the accuracy of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.