Abstract

The present investigation is an attempt to assess the contamination of heavy metals in the ground and surface water of the Singrauli industrial belt area. Pollution indices like heavy metal index (HPI), contamination index (CD) and heavy metal evaluation index (HEI) are used for the evaluation of heavy metal pollution (arsenic As, mercury Hg, cadmium Cd, and lead Pb). Contour maps are constructed to interpret metal spatial distribution. Further, the land-use/land-cover (LULC) maps for the year 2000, 2010 and 2016 are prepared using Landsat satellite data. A total of 48 water samples (Groundwater (27), Surface water (21)) are analysed for heavy metal concentration. Eighty-eight percent of groundwater and 90% of surface water samples are contaminated with Hg. Similarly, high concentrations of Pb and Cd were found in the samples. Surprisingly, all the water samples have As concentration above the WHO permissible limit of 10ppb. Further, 95% of the samples have an HPI value greater than 100 indicating high heavy metal contamination. CD value denotes contamination of 89% of the samples with heavy metals (As, Hg, Cd, Pb). Through spatial distribution, it can be interpreted that most of the contaminated samples lie near thermal power plants, ash ponds, and coal mines. LULC (land use/land cover) study shows a significant decrease in water bodies by (108km2), agricultural land by (54km2) and bare/fallow land by (51km2) from 2000 to 2016. During these 16years, there has been a fourfold increase in the overburden, a threefold increase in dumping yards, a 2.5 times increase in urban areas, and a twofold increase in mining areas. Both the environment and the water quality are deteriorating at an alarming rate. Such scientific investigations are relevant for risk management studies of potable water. The knowledge acquired from such assessment shall be considered with utmost priority by concerned authority considering degrading water quality in the study area. Hence, this study is applicable for designing action plans and control measures to reduce water resource pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.