Abstract

In this paper, we report on a novel MEMS electrostatic inductive transformer using potassium ion electrets on mechanically movable silicon microelectrodes. The device consists of a pair of electrostatic comb drive actuators that share a common mass in the middle part of a spring–mass–spring system. When an excitation AC voltage is applied to the electrode of the input-port comb drive at its mechanical resonant frequency, the mass in the middle oscillates to generate electrostatic inductive charges on the electrodes of the output-port comb drive, which could be read out as an output current. By appropriately designing the ratio of force factors of input- and output-port comb drives, the device operates as a transformer to amplify the current at a high efficiency over of 90% under the optimal load condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.