Abstract
This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 μm to 216 μm. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 μm full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 μm. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror.
Highlights
The utility of confocal microscopy for skin imaging resides in its ability to provide crosssectional images with cellular detail similar to that of histological techniques [1]
Though many studies show promising results with the use of bench-top confocal microscopes, clinical usage requires the use of a smaller handheld unit to allow for imaging of remote areas which are inaccessible by larger bench-top units [2]
The compact design of this instrument is achieved by the use of a highresolution, high-speed bi-axial microelectromechanical systems (MEMS) scanner developed for miniature projection, or pico projector, systems
Summary
The utility of confocal microscopy for skin imaging resides in its ability to provide crosssectional images with cellular detail similar to that of histological techniques [1]. Recent work has largely been aimed at in vivo confocal imaging of skin, with a goal of providing a noninvasive sectional imaging method to replace existing biopsy and histology methods for diagnosis of suspected lesions. Though many studies show promising results with the use of bench-top confocal microscopes, clinical usage requires the use of a smaller handheld unit to allow for imaging of remote areas which are inaccessible by larger bench-top units [2]. In this paper we describe a portable handheld confocal microscope suited for in vivo skin imaging in a clinical setting. A novel aspect of the instrument combines a fixed hemisphere front lens directly in contact with the tissue with commercially available air immersion objective lenses to achieve high numerical aperture (NA) and focus control ability without the need for fluid coupling between the objective lens and the sample
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.