Abstract

The authors report a three-terminal undoped amorphous silicon (a-Si)/p-n crystalline silicon (c-Si) structure, which exhibits OFF and ON states. An OFF state is characterized by a current in the structure in the low nanoampere range due to the large resistance of the undoped a-Si layer, while in the ON state the structure exhibits a large conductance and its current is determined in practice by the load resistance. Reversible switching between the two states with a rise time of about 40 ns and a fall time of about 200 ns was achieved by applying appropriate positive or negative current pulses to the base of the c-Si p-n junction. The structure can be integrated into a standard bipolar process, and, being of a size suitable for VLSI applications, may be useful as a basic three-terminal memory cell. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.