Abstract

Transport equations with a nonlocal velocity field have been introduced as a continuum model for interacting particle systems arising in physics, chemistry and biology. Fractional time derivatives, given by convolution integrals of the time-derivative with power-law kernels, are typical for memory effects in complex systems. In this paper we consider a nonlinear transport equation with a fractional time-derivative. We provide a well-posedness theory for weak measure solutions of the problem and an integral formula which generalizes the classical push-forward representation formula to this setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.