Abstract

In this paper, based on the phase-position perturbation method, an innovative optimal adaptive antenna technique is proposed, where the deduced radiation pattern formulas available for searching optimal solutions are used to search the optimal weighting vector. The optimal radiation pattern designs of adaptive antenna are studied by the phase-position perturbation method. Memetic algorithms are used to search the optimal weighting vector of the phase-position perturbations for the array factor. The design for an optimal radiation pattern of an adaptive antenna can not only adjustably suppress the interferers by placing nulls at the directions of the interfering sources, but at the same time provide a maximum main lobe in the direction of the desired signal, i.e., to maximize the signal-to-interference ratio. To achieve this goal, a new convergent method, referred to as the two-way convergent method for memetic algorithms, is proposed. The memetic algorithm combines a genetic algorithm and local search heuristics to solve combinatorial optimization problems. The memetic algorithm is a kind of improved type of the traditional genetic algorithm. By using a local search procedure, it can avoid the shortcomings of the traditional genetic algorithm, whose termination criteria are set up by using the trial and error method. This proposed method is also able to solve the multipath problem, which exists at the same time in this communication system. The optimal radiation pattern concept can be implemented in practical wireless communication systems. Simulation results are also given in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.