Abstract

(1) Three analogs of merocyanine dyes added to suspensions of chromatophore vesicles showed absorbance changes responding to the change in surface potential induced by salt addition and to the change in membrane potential induced by illumination. (2) The extent of the light-induced absorbance changes of the dyes was linearly related, in the presence and absence of uncouplers, to that of carotenoid spectral shift which is an intrinsic probe of the intramembrane electric field. (3) Comparison of the merocyanine absorbance changes induced by salt addition with those induced by illumination indicated that the surface potential change in the outer surface of chromatophore membranes during illumination was very small. (4) Judging from the spectra of these absorbance and from the low permeabilities of the dyes to membrane, the absorbance change are attributed to change in distribution of the dyes between the medium and the outer surface region in chromatophore membranes. The extent of the light-induced absorbance changes of merocyanine dyes depended on the salt concentration of the medium. The types of dependence were different among three merocyanine analogs. This is explained by the mechanism mentioned above assuming appropriate parameters. It is suggested that, under continuous illumination, an equilibrium of the electrochemical potential of H + is reached between the bulk aqueous phase and the outer surface region in the membrane where the merocyanine dyes are distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.