Abstract

Tachyplesin I (T-SS), an antimicrobial peptide from Tachypleus tridentatus, has a cyclic antiparallel beta-sheet structure maintained by two disulfide bridges. The peptide effectively permeabilizes both bacterial and artificial lipid membranes. T-Acm, a linear analog peptide with the four SH groups protected by acetamidomethyl groups, exhibits a much weaker membrane-permeabilizing activity in spite of a greater disruption of the lipid organization [Matsuzaki, K., Nakayama, M., Fukui, M., Otaka, A., Funakoshi, S., Fujii, N., Bessho, K., & Miyajima, K. (1993) Biochemistry 32, 11704-11710]. To clarify the efficient permeabilization mechanism of T-SS, we studied the interactions of both peptides with liposomes and planar lipid bilayers. The cyclic peptide capable of spanning the bilayer (ca. 3 nm length) was found to form an anion-selective pore and translocate across the bilayer coupled with the pore formation. A cis-negative transmembrane potential facilitated the pore formation compared with the cis-positive potential. In contrast, the linear peptide failed to translocate. Instead, it impaired the membrane barrier by disrupting the lipid organization with morphological changes in the vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.