Abstract
1. The large monopolar cells (LMCs) of the fly, Calliphora vicina, visual system transmit graded potentials over distances of up to 1.0 mm. An electrical model was constructed to investigate the design principles relating their membrane parameters to signal transmission and filtering. 2. Using existing anatomical measurements, a cable model (van Hateren 1986) was fitted to the measured intracellular responses of the cells to injected current. The LMC has three functional components: a distal synaptic zone of low impedance, an axon with high specific membrane resistance (greater than 50.10(5) M omega.micron 2), and a high impedance proximal terminal. These components interact to transmit information efficiently. The low input impedance synaptic zone charges and discharges the axon rapidly, ensuring a good frequency response. The high resistance axon conducts signals with little decrement. The model shows that graded potential transmission in LMCs selectively filters synaptic noise and predicts the changes in response waveform that occur during transmission. 3. The parameters of the model were adjusted to determine the relative costs and benefits of alternative cable designs. The design used in LMCs is the most expensive and the most effective. It requires the largest currents to generate responses but transmits signals with least decrement. Parallel neurons in the fly visual system have fewer input synapses and this could low-pass filter their graded response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.