Abstract

In the present paper the interaction of metaphase chromosomes and chromatin with model and natural lipid membranes was studied. It was shown that chromatin and chromosomes are able to form complexes with membranes in the presence of divalent cations. In such complexes, the typical structure of chromosomes is altered. The character of this alteration in chromosomal structure was investigated with the use of electron microscopy and chemical modification with dimethylsulphate (DMS). The latter is possible because, according to the presented data, the condensation of chromatin into chromosomes is associated with a decrease in accessibility of N-3 in adenine (the protection of the minor groove of DNA) to modifications, and with an increased methylation of N-1 in adenine (the disarrangement of the secondary structure of DNA). It was shown that the interaction of chromosomes with liposomes provides various levels of unfolding up to the appearance of chromatin-like structures. The secondary DNA structure of decondensed chromosomes coincides with the secondary structure of chromosomal but not chromatin DNA, whereas the extent of shielding of the minor groove of DNA in such decondensed structures typical for chromatin DNA. It is possible to suggest that the chromosomal decondensation in telophase of mitosis is initiated by the action of a membrane component of the developing nuclear envelope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.