Abstract

Deprivation of iron from the growth medium results in physiological as well as structural changes in the unicellular cyanobacterium Anacystis nidulans R2. Important among these changes are alterations in the composition and function of the photosynthetic membranes. Room-temperature absorption spectra of iron-starved cyanobacterial cells show a chlorophyll absorption peak at 672 nanometers, 7 nanometers blue-shifted from its normal position at 679 nanometers. Iron-starved cells have decreased amounts of chlorophyll and phycobilins. Their fluorescence spectra (77K) have one prominent chlorophyll emission peak at 684 nanometers as compared to three peaks at 687, 696, and 717 nanometers from normal cells. Chlorophyll-protein analysis of iron-deprived cells indicated the absence of high molecular weight bands. Addition of iron to iron-starved cells induced a restoration process in which new components were initially synthesized and integrated into preexisting membranes; at later times, new membranes were assembled and cell division commenced. Synthesis of chlorophyll and phycocyanins started almost immediately after the addition of iron. The absorption peak slowly returned to its normal wavelength within 24 to 28 hours. The fluorescence emission spectrum at 77K changed over a period of 14 to 24 hours during which the 696- and 717-nanometer peaks grew to their normal levels, and the 684 nanometer peak moved to 687 nanometers and its relative intensity decreased to its normal level. Analysis of chlorophyll-protein complexes on polyacrylamide gels showed that high molecular weight chlorophyll-protein bands were formed during this time, and that low molecular weight bands (related to photosystem II) disappeared. The origin of the fluorescence emission at 687 and 696 nanometers is discussed in relation to the specific chlorophyll-protein complexes formed during iron reconstitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.